咨询热线 13332997463 | 0755-33151996

20201675

丰镇专业配音

时间:2019-08-18 点击:927次

摘要
  可以假设这样一个函数f(x)=1(x是有理数的时候)=0(x是无理数的时候)那么f(x)在x为任意实数的时候,只有1和0两种取值,所以f(x)是有界的。  但是在任意区间内(无论是开区间还是闭区间),都有无数个有理数和无理数。所以f(x)在任意区间内斗有无数个间断点

  可以假设这样一个函数f(x)=1(x是有理数的时候)=0(x是无理数的时候)那么f(x)在x为任意实数的时候,只有1和0两种取值,所以f(x)是有界的。

  但是在任意区间内(无论是开区间还是闭区间),都有无数个有理数和无理数。所以f(x)在任意区间内斗有无数个间断点,所以这个函数在任意区间内斗不可积。

  在D上有上(下)界,则意味着值域(D)是一个有上(下)界的数集。根据确界原理,在定义域上有上(下)确界。一个特例是有界数列,其中X是所有自然数所组成的集合N。由 (x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。

  在D上有上(下)界,则意味着值域(D)是一个有上(下)界的数集。又若M(L)为在D上的上(下)界,则任何大于(小于)M(L)的数也是在D上的上(下)界。根据确界原理,在定义域上有上(下)确界。

  由 (x)=sinx所定义的函数f:R→R是有界的。如果正弦函数是定义在所有复数的集合上,则不再是有界的。 函数 (x不等于-1或1)是无界的。当x越来越接近-1或1时,函数的值就变得越来越大。但是,如果把函数的定义域限制为[2, ∞),则函数就是有界的。

  

  那么f(x)在x为任意实数的时候,配音价位只有1和0两种取值,所以f(x)是有界的。

  但是在任意区间内(无论是开区间还是闭区间),都有无数个有理数和无理数。配音价位所以f(x)在任意区间内斗有无数个间断点,所以这个函数在任意区间内斗不可积。

  有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,配音价位存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。

  有界函数并不一定是连续的。根据定义,在D上有上(下)界,则意味着值域(D)是一个有上(下)界的数集。根据确界原理,在定义域上有上(下)确界。一个特例是有界数列,其中X是所有自然数所组成的集合N。由 (x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。

-->