咨询热线 13332997463 | 0755-33151996

20201675

能录音的

时间:2019-09-25 点击:664次

摘要
  给定偏序集(S, ≤),A是S的子集,则A的上确界(亦称最小上界)supA定义为满足以下条件的元素:  在一般的数学分析学教材中,实数理论一章,为了说明实数的紧性,有一系列的定理,理论比较严密的前苏联教材一般是以戴德金分割定理为出发点证明其它的等价定理。  而我国教材为了简化,很多都是从确界定理

  给定偏序集(S, ≤),A是S的子集,则A的上确界(亦称最小上界)supA定义为满足以下条件的元素:

  在一般的数学分析学教材中,实数理论一章,为了说明实数的紧性,有一系列的定理,理论比较严密的前苏联教材一般是以戴德金分割定理为出发点证明其它的等价定理。

  而我国教材为了简化,很多都是从确界定理为出发点进行的证明,其他说明实数的连续性的定理还有区间套定理,有限覆盖定理等等。

  具体到数学分析中。一个实数集合A,若有一个实数M,使得A中任何数都不超过M,那么就称M是A的一个上界。日和中文配音在所有那些上界中如果有一个最小的上界,就称为A的上确界。

  一个数集若有上界,则它有无数个上界;但是上确界却只有一个,日和中文配音这可以直观地从上确界(最小上界)的含义中看出来。并且如果一个数集若有上界,则它一定有上确界。

  

  上确界”的概念是数学分析中最基本的概念。 考虑一个实数集合M. 如果有一个实数S,使得M中任何数都不超过S,那么就称S是M的一个上界。

  在实数理论中最基本的一条公理就是所谓的上确界原理:“任何有上界的实数集合必存在上确界”。

能录音的

-->