咨询热线 13332997463 | 0755-33151996

20201675

配音公司哪家比较好

时间:2019-10-29 点击:660次

摘要
  4、测量两个定量变量之间的相关程度,参数检验用Pearson相关系数,非参数检验用Spearman秩相关。  1、数据分布的集中趋势更适合用中位数来表示。比如收入,偏态分布的中心可以通过中位数更好地衡量,其中50%在中位数之上,50%在中位数之下。如果在样本中加入几个亿万富翁,即使一般人的收入没

  4、测量两个定量变量之间的相关程度,参数检验用Pearson相关系数,非参数检验用Spearman秩相关。

  1、数据分布的集中趋势更适合用中位数来表示。比如收入,偏态分布的中心可以通过中位数更好地衡量,其中50%在中位数之上,50%在中位数之下。如果在样本中加入几个亿万富翁,即使一般人的收入没有变化,平均值也会大幅度增加,但中位数没有显著差异。

  2、样本量很小:当样本量非常小时,不足以确定数据是否正态分布,则应使用非参数检验。

  3、存在等级顺序数据或异常值:典型的参数检验只能对连续数据进行评估,异常值对结果的影响较大。相反,一些非参数检验可以处理等级顺序数据,不受异常值的严重影响。

  总之,使用参数或非参数检验主要取决于平均值还是中位数可以更准确地表示数据分布的中心。如果是平均值,且样本量足够大,那么考虑参数检验。如果是中位数,即使样本很大,也要考虑非参数检验。

  

  1,参数检验是针对参数做的假设,非参数检验是针对总体分布情况做的假设,这个是区分参数检验和非参数检验的一个重要特征。

  2,二者的根本区别在于参数检验要利用到总体的信息(总体分布、总体的一些参数特征如方差),以总体分布和样本信息对总体参数作出推断;非参数检验不需要利用总体的信息(总体分布、幻灯片配音总体的一些参数特征如方差),以样本信息对总体分布作出推断。

  3,参数检验只能用于等距数据和比例数据,非参数检验主要用于记数数据。也可用于等距和比例数据,但精确性就会降低。

  非参数检验往往不假定总体的分布类型,直接对总体的分布的某种假设(例如如称性、分位数大小等等假设)作统计检验。当然,上一节介绍的拟合优度检验也是非参数检验。除了拟合优度检验外,还有许多常用的非参数检验。最常见的非参数检验统计量有 3类:计数统计量、秩统计量、幻灯片配音符号秩统计量。

-->